Study on free radicals of cotton and wool fibers treated with low-temperature plasma

Author(s):  
Jie-Rong Chen
2021 ◽  
pp. 004051752110306
Author(s):  
Honglian Cong ◽  
Boyu Zhao ◽  
Hao Han ◽  
Xuliang Yu

Nine groups of knitted woolen fabrics for sportswear with different technical characteristics were treated with oxygen low-temperature plasma, and the changes in the surface morphology and chemical composition of wool fibers before and after plasma treatment, as well as the changes in the applicability indexes of knitted woolen fabrics, were studied. Finally, the comfort performance of the fabrics was evaluated by combining the concentration mapping method and the function evaluation value method. The analysis found that the surface scales of wool fibers were seriously etched after oxygen low-temperature plasma treatment, and the anti-felting, bursting strength and moisture absorption of the knitted woolen fabrics were improved. At the same time, the quick-drying index of the fabric has also been improved to a certain extent. This research provides a basis for the development of knitted woolen fabric for sportswear with excellent performance.


2011 ◽  
Vol 331 ◽  
pp. 338-341 ◽  
Author(s):  
Yan Li Qiao ◽  
Wen Fang Yang ◽  
Qing Fu Zhang ◽  
Xiao Xing Shen

This paper discussed the influences of plasma processing time and power on wool fibers, the results showed that: after plasma treatment, the surface of the wool fibers occurred varying degrees of physical and chemical etching phenomenon, the wetting property was increased significantly, anti-shrinkage performance was improved. Breaking strength and elongation at fracture were increased; the beginning of dyeing properties and the balance rate were increased.


2003 ◽  
Vol 73 (11) ◽  
pp. 955-959 ◽  
Author(s):  
Ricardo Molina ◽  
Pilar Erra ◽  
Luís Julià ◽  
Enric Bertran

2012 ◽  
Vol 441 ◽  
pp. 49-53
Author(s):  
Hua Qing Wang ◽  
Mei Yang

With the increase in the environmental protection consciousness of people, attention has focused on plasma technology because of its efficiency and environmentally friendliness. In order to improve the dyeing behavior of wool fabrics, surface modification of wool fabrics was carried out using an atmospheric pressure (argon) low temperature plasma treatment (LTP). Morphology and chemical composition analyses of the treated wool fiber surface were carried out by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The effect on the surface properties of wool fabrics treated for different times was evaluated. The results showed that the coloration of wool fabric is improved with an argon atmospheric pressure low temperature plasma (LTP) treatment but the fabric has a lower color fastness to washing and rubbing. This results from the formation of sulfonic groups and the increase in nitrogen content attributed to more severe etching and oxidization on the surface of wool fibers.


1989 ◽  
Vol 59 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Tomiji Wakida ◽  
Keiji Takeda ◽  
Itsuo Tanaka ◽  
Toru Takagishi

Author(s):  
M Yu Gerasimenko ◽  
T N Zaitseva ◽  
I S Evstigneeva

Low-temperature plasma is a partially ionized gas obtained at atmospheric pressure and having a macroscopic temperature close to the ambient temperature. The composition of the torch of low-temperature plasma includes charged particles, neutral active particles, including free radicals and particles in metastable states, as well as ultraviolet radiation. The biological effects of plasma are associated with the synergistic effect of the listed factors, each of which has a subliminal concentration that does not cause changes in the biological object. Intensive research on the use of low-temperature plasma in medicine began about 10 years ago, although some pioneering work appeared much earlier, mainly in Russia. Since the mid-2000s. in the world began to actively develop sources of gas plasma, in which the temperature of the plasma torch is reduced to the temperature of the human body. The use of such structures makes it possible to subject the treated surface to direct plasma action and to use the entire spectrum of active plasma components, including photons, electrons, ions, free radicals, and molecules in an excited state. Low-temperature plasma has a number of fundamental advantages, which include high non-specific bactericidal activity, low probability of occurrence of stable forms, the absence of ionizing radiation and highly toxic substances. The described advantages together with a comfortable temperature, relative simplicity and low cost methods, the lack of specific requirements for the treated surface make low-temperature plasma a promising method for the treatment of various pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document